Method for extraction of airborne LiDAR point cloud buildings based on segmentation.

Journal: PloS one
Published Date:

Abstract

The LiDAR technology is a means of urban 3D modeling in recent years, and the extraction of buildings is a key step in urban 3D modeling. In view of the complexity of most airborne LiDAR building point cloud extraction algorithms that need to combine multiple feature parameters, this study proposes a building point cloud extraction method based on the combination of the Point Cloud Library (PCL) region growth segmentation and the histogram. The filtered LiDAR point cloud is segmented by using the PCL region growth method, and then the local normal vector and direction cosine are calculated for each cluster after segmentation. Finally, the histogram is generated to effectively separate the building point cloud from the non-building.Two sets of airborne LiDAR data in the south and west parts of Tokushima, Japan, are used to test the feasibility of the proposed method. The results are compared with those of the commercial software TerraSolid and the K-means algorithm. Results show that the proposed extraction algorithm has lower type I and II errors and better extraction effect than that of the TerraSolid and the K-means algorithm.

Authors

  • Maohua Liu
    College of Land and Environment, Shenyang Agricultural University, Shenyang, China.
  • Yue Shao
    Department of Respiratory Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
  • Ruren Li
    School of Transportation Engineering, Shenyang Jianzhu University, Shenyang, China.
  • Yan Wang
    College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.
  • Xiubo Sun
    Shenyang Center of Geological Survey, China Geological Survey, Shenyang, China.
  • Jingkuan Wang
    College of Land and Environment, Shenyang Agricultural University, Shenyang, China.
  • Yingchun You
    School of Transportation Engineering, Shenyang Jianzhu University, Shenyang, China.