Cardiac MR segmentation based on sequence propagation by deep learning.

Journal: PloS one
Published Date:

Abstract

Accurate segmentation of myocardial in cardiac MRI (magnetic resonance image) is key to effective rapid diagnosis and quantitative pathology analysis. However, a low-quality CMR (cardiac magnetic resonance) image with a large amount of noise makes it extremely difficult to accurately and quickly manually segment the myocardial. In this paper, we propose a method for CMR segmentation based on U-Net and combined with image sequence information. The method can effectively segment from the top slice to the bottom slice of the CMR. During training, each input slice depends on the slice below it. In other words, the predicted segmentation result depends on the existing segmentation label of the previous slice. 3D sequence information is fully utilized. Our method was validated on the ACDC dataset, which included CMR images of 100 patients (1700 2D MRI). Experimental results show that our method can segment the myocardial quickly and efficiently and is better than the current state-of-the-art methods. When evaluating 340 CMR image, our model yielded an average dice score of 85.02 ± 0.15, which is much higher than the existing classical segmentation method(Unet, Dice score = 0.78 ± 0.3).

Authors

  • Chao Luo
    School of Information Science and Engineering, Shandong Normal University, Jinan, China.
  • Canghong Shi
    School of Information Science and Technology Southwest Jiaotong University, Chengdu, Sichuan, China.
  • Xiaoji Li
    Chengdu University of Information Technology, Chengdu, Sichuan, China.
  • Dongrui Gao
    School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China.