Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT.

Journal: Radiology
Published Date:

Abstract

Background Identifying the presence and extent of infarcted brain tissue at baseline plays a crucial role in the treatment of patients with acute ischemic stroke (AIS). Patients with extensive infarction are unlikely to benefit from thrombolysis or thrombectomy procedures. Purpose To develop an automated approach to detect and quantitate infarction by using non-contrast-enhanced CT scans in patients with AIS. Materials and Methods Non-contrast-enhanced CT images in patients with AIS (<6 hours from symptom onset to CT) who also underwent diffusion-weighted (DW) MRI within 1 hour after AIS were obtained from May 2004 to July 2009 and were included in this retrospective study. Ischemic lesions manually contoured on DW MRI scans were used as the reference standard. An automatic segmentation approach involving machine learning (ML) was developed to detect infarction. Randomly selected nonenhanced CT images from 157 patients with the lesion labels manually contoured on DW MRI scans were used to train and validate the ML model; the remaining 100 patients independent of the derivation cohort were used for testing. The ML algorithm was quantitatively compared with the reference standard (DW MRI) by using Bland-Altman plots and Pearson correlation. Results In 100 patients in the testing data set (median age, 69 years; interquartile range [IQR]: 59-76 years; 59 men), baseline non-contrast-enhanced CT was performed within a median time of 48 minutes from symptom onset (IQR, 27-93 minutes); baseline MRI was performed a median of 38 minutes (IQR, 24-48 minutes) later. The algorithm-detected lesion volume correlated with the reference standard of expert-contoured lesion volume in acute DW MRI scans ( = 0.76, < .001). The mean difference between the algorithm-segmented volume (median, 15 mL; IQR, 9-38 mL) and the DW MRI volume (median, 19 mL; IQR, 5-43 mL) was 11 mL ( = .89). Conclusion A machine learning approach for segmentation of infarction on non-contrast-enhanced CT images in patients with acute ischemic stroke showed good agreement with stroke volume on diffusion-weighted MRI scans. © RSNA, 2020 See also the editorial by Nael in this issue.

Authors

  • Wu Qiu
    From the Calgary Stroke Program, Departments of Clinical Neurosciences (W.Q., H.K., E.T., J.M.O., M.G., M.D.H., A.M.D., B.K.M.), Radiology (M.G., M.D.H., A.M.D., B.K.M.), and Community Health Sciences (M.D.H., B.K.M.), University of Calgary, 239 Strathridge Pl SW, Calgary, AB, Canada T3H 4J2; Hotchkiss Brain Institute, Calgary, Alberta, Canada (M.G., M.D.H., A.M.D., B.K.M.), Department of Neurology, Keimyung University, Daegu, South Korea (S.I.S.); and Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland (J.M.O.).
  • Hulin Kuang
    From the Calgary Stroke Program, Departments of Clinical Neurosciences (W.Q., H.K., E.T., J.M.O., M.G., M.D.H., A.M.D., B.K.M.), Radiology (M.G., M.D.H., A.M.D., B.K.M.), and Community Health Sciences (M.D.H., B.K.M.), University of Calgary, 239 Strathridge Pl SW, Calgary, AB, Canada T3H 4J2; Hotchkiss Brain Institute, Calgary, Alberta, Canada (M.G., M.D.H., A.M.D., B.K.M.), Department of Neurology, Keimyung University, Daegu, South Korea (S.I.S.); and Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland (J.M.O.).
  • Ericka Teleg
    From the Calgary Stroke Program, Departments of Clinical Neurosciences (W.Q., H.K., E.T., J.M.O., M.G., M.D.H., A.M.D., B.K.M.), Radiology (M.G., M.D.H., A.M.D., B.K.M.), and Community Health Sciences (M.D.H., B.K.M.), University of Calgary, 239 Strathridge Pl SW, Calgary, AB, Canada T3H 4J2; Hotchkiss Brain Institute, Calgary, Alberta, Canada (M.G., M.D.H., A.M.D., B.K.M.), Department of Neurology, Keimyung University, Daegu, South Korea (S.I.S.); and Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland (J.M.O.).
  • Johanna M Ospel
    From the Calgary Stroke Program, Departments of Clinical Neurosciences (W.Q., H.K., E.T., J.M.O., M.G., M.D.H., A.M.D., B.K.M.), Radiology (M.G., M.D.H., A.M.D., B.K.M.), and Community Health Sciences (M.D.H., B.K.M.), University of Calgary, 239 Strathridge Pl SW, Calgary, AB, Canada T3H 4J2; Hotchkiss Brain Institute, Calgary, Alberta, Canada (M.G., M.D.H., A.M.D., B.K.M.), Department of Neurology, Keimyung University, Daegu, South Korea (S.I.S.); and Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland (J.M.O.).
  • Sung Il Sohn
    From the Calgary Stroke Program, Departments of Clinical Neurosciences (W.Q., H.K., E.T., J.M.O., M.G., M.D.H., A.M.D., B.K.M.), Radiology (M.G., M.D.H., A.M.D., B.K.M.), and Community Health Sciences (M.D.H., B.K.M.), University of Calgary, 239 Strathridge Pl SW, Calgary, AB, Canada T3H 4J2; Hotchkiss Brain Institute, Calgary, Alberta, Canada (M.G., M.D.H., A.M.D., B.K.M.), Department of Neurology, Keimyung University, Daegu, South Korea (S.I.S.); and Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland (J.M.O.).
  • Mohammed Almekhlafi
    From the Calgary Stroke Program, Departments of Clinical Neurosciences (W.Q., H.K., E.T., J.M.O., M.G., M.D.H., A.M.D., B.K.M.), Radiology (M.G., M.D.H., A.M.D., B.K.M.), and Community Health Sciences (M.D.H., B.K.M.), University of Calgary, 239 Strathridge Pl SW, Calgary, AB, Canada T3H 4J2; Hotchkiss Brain Institute, Calgary, Alberta, Canada (M.G., M.D.H., A.M.D., B.K.M.), Department of Neurology, Keimyung University, Daegu, South Korea (S.I.S.); and Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland (J.M.O.).
  • Mayank Goyal
    Department of Diagnostic Imaging, University of Calgary, Calgary, Alberta, Canada.
  • Michael D Hill
    Calgary Stroke Program, Departments of Clinical Neurosciences, Radiology, Community Health Sciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
  • Andrew M Demchuk
    Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
  • Bijoy K Menon
    Calgary Stroke Program, University of Calgary, Calgary, Alberta, Canada.