Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study.

Journal: European radiology
Published Date:

Abstract

OBJECTIVES: To assess the impact on image quality and dose reduction of a new deep learning image reconstruction (DLIR) algorithm compared with a hybrid iterative reconstruction (IR) algorithm.

Authors

  • Joël Greffier
    Department of Medical Imaging, CHU Nimes, Medical Imaging Group Nimes, Univ Montpellier, EA 2415, Bd Prof Robert Debré, 30029, Nîmes Cedex 9, France. joel.greffier@chu-nimes.fr.
  • Aymeric Hamard
    Department of Medical Imaging, CHU Nimes, Medical Imaging Group Nimes, Univ Montpellier, EA 2415, Bd Prof Robert Debré, 30029, Nîmes Cedex 9, France.
  • Fabricio Pereira
    Department of Medical Imaging, CHU Nimes, Medical Imaging Group Nimes, Univ Montpellier, EA 2415, Bd Prof Robert Debré, 30029, Nîmes Cedex 9, France.
  • Corinne Barrau
    Department of Medical Physics, CHU Nimes, Univ Montpellier, Montpellier, France.
  • Hugo Pasquier
    GE Healthcare, Buc, France.
  • Jean Paul Beregi
    Department of Medical Imaging, CHU Nimes, Medical Imaging Group Nimes, Univ Montpellier, EA 2415, Bd Prof Robert Debré, 30029, Nîmes Cedex 9, France.
  • Julien Frandon
    Department of Medical Imaging, CHU Nimes, Medical Imaging Group Nimes, Univ Montpellier, EA 2415, Bd Prof Robert Debré, 30029, Nîmes Cedex 9, France.