AIMC Topic: Radiographic Image Interpretation, Computer-Assisted

Clear Filters Showing 1 to 10 of 1260 articles

Intelligent diagnosis model for chest X-ray images diseases based on convolutional neural network.

BMC medical imaging
To address misdiagnosis caused by feature coupling in multi-label medical image classification, this study introduces a chest X-ray pathology reasoning method. It combines hierarchical attention convolutional networks with a multi-label decoupling lo...

A deep learning-based computed tomography reading system for the diagnosis of lung cancer associated with cystic airspaces.

Scientific reports
To propose a deep learning model and explore its performance in the auxiliary diagnosis of lung cancer associated with cystic airspaces (LCCA) in computed tomography (CT) images. This study is a retrospective analysis that incorporated a total of 342...

Artificial Intelligence Iterative Reconstruction for Dose Reduction in Pediatric Chest CT: A Clinical Assessment via Below 3 Years Patients With Congenital Heart Disease.

Journal of thoracic imaging
PURPOSE: To assess the performance of a newly introduced deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in reducing the dose of pediatric chest CT by using the image data of below 3-y...

Improved swin transformer-based thorax disease classification with optimal feature selection using chest X-ray.

PloS one
Thoracic diseases, including pneumonia, tuberculosis, lung cancer, and others, pose significant health risks and require timely and accurate diagnosis to ensure proper treatment. Thus, in this research, a model for thorax disease classification using...

Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating the use of smoother reconstruction kernels that reduce resolution below the 0.125-mm maximum spatial re...

Multi-spatial-attention U-Net: a novel framework for automated gallbladder segmentation on CT images.

BMC medical imaging
OBJECTIVE: This study aimed to construct a novel model, Multi-Spatial Attention U-Net (MSAU-Net) by incorporating our proposed Multi-Spatial Attention (MSA) block into the U-Net for the automated segmentation of the gallbladder on CT images.

Deep Learning-enhanced Opportunistic Osteoporosis Screening in Ultralow-Voltage (80 kV) Chest CT: A Preliminary Study.

Academic radiology
RATIONALE AND OBJECTIVES: To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening.

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC medical imaging
BACKGROUND: The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-con...

Impact of Photon-counting Detector Computed Tomography on a Quantitative Interstitial Lung Disease Machine Learning Model.

Journal of thoracic imaging
PURPOSE: Compare the impact of photon-counting detector computed tomography (PCD-CT) to conventional CT on an interstitial lung disease (ILD) quantitative machine learning (QML) model.