A novel artificial intelligence protocol for finding potential inhibitors of acute myeloid leukemia.

Journal: Journal of materials chemistry. B
PMID:

Abstract

There is currently no effective treatment for acute myeloid leukemia, and surgery is also ineffective as an important treatment for most tumors. Rapidly developing artificial intelligence technology can be applied to different aspects of drug development, and it plays a key role in drug discovery. Based on network pharmacology and virtual screening, candidates were selected from the molecular database. Nine artificial intelligence algorithm models were used to further verify the candidates' potential. The 350 training results of the deep learning model showed higher credibility, and the R-square of the training set and test set of the optimal model reached 0.89 and 0.84, respectively. The random forest model has an R-square of 0.91 and a mean square error of only 0.003. The R-square of the Adaptive Boosting model and the Bagging model reached 0.92 and 0.88, respectively. Molecular dynamics simulation evaluated the stability of the ligand-protein complex and achieved good results. Artificial intelligence models had unearthed the promising candidates for STAT3 inhibitors, and the good performance of most models showed that they still had practical value on small data sets.

Authors

  • Xu Chen
    School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
  • Hsin-Yi Chen
    School of Intelligent Systems Engineering , Sun Yat-sen University , Shenzhen 510275 , China.
  • Zhi-Dong Chen
    Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China. chenyuchian@mail.sysu.edu.cn and School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, 510275, China.
  • Jia-Ning Gong
    Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 510275, China. chenyuchian@mail.sysu.edu.cn and School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, 510275, China.
  • Calvin Yu-Chian Chen
    School of Intelligent Systems Engineering , Sun Yat-sen University , Shenzhen 510275 , China.