Machine Learning Uncovers Food- and Excipient-Drug Interactions.
Journal:
Cell reports
PMID:
32187543
Abstract
Inactive ingredients and generally recognized as safe compounds are regarded by the US Food and Drug Administration (FDA) as benign for human consumption within specified dose ranges, but a growing body of research has revealed that many inactive ingredients might have unknown biological effects at these concentrations and might alter treatment outcomes. To speed up such discoveries, we apply state-of-the-art machine learning to delineate currently unknown biological effects of inactive ingredients-focusing on P-glycoprotein (P-gp) and uridine diphosphate-glucuronosyltransferase-2B7 (UGT2B7), two proteins that impact the pharmacokinetics of approximately 20% of FDA-approved drugs. Our platform identifies vitamin A palmitate and abietic acid as inhibitors of P-gp and UGT2B7, respectively; in silico, in vitro, ex vivo, and in vivo validations support these interactions. Our predictive framework can elucidate biological effects of commonly consumed chemical matter with implications on food- and excipient-drug interactions and functional drug formulation development.
Authors
Keywords
Abietanes
Animals
ATP Binding Cassette Transporter, Subfamily B, Member 1
Biological Assay
Diterpenes
Drug Interactions
Excipients
Female
Food
Glucuronosyltransferase
Hep G2 Cells
Humans
Machine Learning
Mice, Inbred BALB C
Pharmaceutical Preparations
Retinyl Esters
Swine
United States
United States Food and Drug Administration