A computer-aided diagnosis system for brain magnetic resonance imaging images using a novel differential feature neural network.

Journal: Computers in biology and medicine
Published Date:

Abstract

To improve the performance of brain tumor diagnosis, numerous automatic brain tumor diagnosis systems that use machine learning technologies have been proposed. However, most current systems ignore the structural symmetry of brain magnetic resonance imaging (MRI) images and regard brain tumor diagnosis as a simple pattern recognition task. As a result, the performance of the current systems is not ideal. To improve the performance of the brain tumor screening process, an innovative differential feature map (DFM) block is proposed to magnify tumor regions, and DFM blocks are further combined with squeeze-and-excitation (SE) blocks to form a differential feature neural network (DFNN). First, an automatic image rectification method is applied so that the symmetry axes of brain MRI images are approximately parallel to the perpendicular axis. Moreover, a DFNN is constructed to classify the brain MRI images into two categories: "abnormal" and "normal". The experimental results show that the average accuracy of the proposed system on two databases can reach 99.2% and 98%, and the introduction of the proposed DFM block can improve the average accuracy on these two databases by 1.8% and 1.3%, respectively, which indicates that the proposed DFM block can improve the performance of the brain tumor screening process.

Authors

  • Zheng Huang
    Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China.
  • Han Xu
    1Institute of Microelectronics, Peking University, Beijing, 100871 China.
  • Shun Su
    State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Tianyu Wang
    State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University; University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University.
  • Yang Luo
  • Xingang Zhao
  • Yunhui Liu
  • Guoli Song
    State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China; Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China; Liaoning Medical Surgery and Rehabilitation Robot Engineering Research Center, Shenyang, CO, 110134, China. Electronic address: songgl@sia.cn.
  • Yiwen Zhao