Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study.

Journal: Psychological medicine
Published Date:

Abstract

UNLABELLED: .

Authors

  • Diego Librenza-Garcia
    Graduation Program in Psychiatry, Universidade Federal das Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, 90035-903, Brazil. Electronic address: diegolibrenzagarcia@gmail.com.
  • Ives Cavalcante Passos
    Center of Excellence on Mood Disorder, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Bipolar Disorder Program and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
  • Jacson Gabriel Feiten
    Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
  • Paulo A Lotufo
    Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
  • Alessandra C Goulart
    Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
  • Itamar de Souza Santos
    Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
  • Maria Carmen Viana
    Department of Social Medicine, Postgraduate Program in Public Health, Center of Psychiatric Epidemiology (CEPEP), Federal University of Espírito Santo, Vitória, Brazil.
  • Isabela M Benseñor
    Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
  • Andre Russowsky Brunoni
    Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.