Kidney segmentation from computed tomography images using deep neural network.
Journal:
Computers in biology and medicine
Published Date:
Jul 11, 2020
Abstract
BACKGROUND: The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. Manual segmentation of the kidneys is extremely time-consuming and prone to variability between different specialists due to their heterogeneity. Because of this hard work, computational techniques, such as deep convolutional neural networks, have become popular in kidney segmentation tasks to assist in the early diagnosis of kidney tumors. In this study, we propose an automatic method to delimit the kidneys in computed tomography (CT) images using image processing techniques and deep convolutional neural networks (CNNs) to minimize false positives.