iPiDA-sHN: Identification of Piwi-interacting RNA-disease associations by selecting high quality negative samples.

Journal: Computational biology and chemistry
Published Date:

Abstract

As a large group of small non-coding RNAs (ncRNAs), Piwi-interacting RNAs (piRNAs) have been detected to be associated with various diseases. Identifying disease associated piRNAs can provide promising candidate molecular targets to promote the drug design. Although, a few computational ensemble methods have been developed for identifying piRNA-disease associations, the low-quality negative associations even with positive associations used during the training process prevent the predictive performance improvement. In this study, we proposed a new computational predictor named iPiDA-sHN to predict potential piRNA-disease associations. iPiDA-sHN presented the piRNA-disease pairs by incorporating piRNA sequence information, the known piRNA-disease association network, and the disease semantic graph. High-level features of piRNA-disease associations were extracted by the Convolutional Neural Network (CNN). Two-step positive-unlabeled learning strategy based on Support Vector Machine (SVM) was employed to select the high quality negative samples from the unknown piRNA-disease pairs. Finally, the SVM predictor trained with the known piRNA-disease associations and the high quality negative associations was used to predict new piRNA-disease associations. The experimental results showed that iPiDA-sHN achieved superior predictive ability compared with other state-of-the-art predictors.

Authors

  • Hang Wei
    Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China.
  • Yuxin Ding
    School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China. Electronic address: yxding@hit.edu.cn.
  • Bin Liu
    Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrinology, Neijiang First People's Hospital, Chongqing, China.