AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease

Showing 1 to 10 of 142 articles

Clear Filters

Integration of biological data via NMF for identification of human disease-associated gene modules through multi-label classification.

PloS one
Proteins associated with multiple diseases often interact, forming disease modules that are critical for understanding disease mechanisms. This study integrates protein-protein interactions (PPIs) and Gene Ontology data using non-negative matrix fact...

SSGU-CD: A combined semantic and structural information graph U-shaped network for document-level Chemical-Disease interaction extraction.

Journal of biomedical informatics
Document-level interaction extraction for Chemical-Disease is aimed at inferring the interaction relations between chemical entities and disease entities across multiple sentences. Compared with sentence-level relation extraction, document-level rela...

Identifying diseases symptoms and general rules using supervised and unsupervised machine learning.

Scientific reports
The symptoms of diseases can vary among individuals and may remain undetected in the early stages. Detecting these symptoms is crucial in the initial stage to effectively manage and treat cases of varying severity. Machine learning has made major adv...

EnrichDO: a global weighted model for Disease Ontology enrichment analysis.

GigaScience
BACKGROUND: Disease Ontology (DO) has been widely studied in biomedical research and clinical practice to describe the roles of genes. DO enrichment analysis is an effective means to discover associations between genes and diseases. Compared to hundr...

Annotated corpus for traditional formula-disease relationships in biomedical articles.

Scientific data
The Traditional Formula (TF), a combination of herbs prepared in accordance with traditional medicine principles, is increasingly garnering global attention as an alternative to modern medicine. Specifically, there is growing interest in exploring TF...

Self-Supervised Contrastive Learning on Attribute and Topology Graphs for Predicting Relationships Among lncRNAs, miRNAs and Diseases.

IEEE journal of biomedical and health informatics
Exploring associations between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is crucial for disease prevention, diagnosis and treatment. While determining these relationships experimentally is resource-intensive and time-consuming, ...

SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases.

Bioinformatics (Oxford, England)
MOTIVATION: Identifying effective therapeutic targets poses a challenge in drug discovery, especially for uncharacterized diseases without known therapeutic targets (e.g. rare diseases, intractable diseases).

A comprehensive graph neural network method for predicting triplet motifs in disease-drug-gene interactions.

Bioinformatics (Oxford, England)
MOTIVATION: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph moti...

The role of explainable artificial intelligence in disease prediction: a systematic literature review and future research directions.

BMC medical informatics and decision making
Explainable Artificial Intelligence (XAI) enhances transparency and interpretability in AI models, which is crucial for trust and accountability in healthcare. A potential application of XAI is disease prediction using various data modalities. This s...

GDReCo: Fine-grained gene-disease relationship extraction corpus.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Understanding gene-disease relationships is crucial for medical research, drug discovery, clinical diagnosis, and other fields. However, there is currently no high-quality, fine-grained corpus available for training Natural ...