Identifying disease trajectories with predicate information from a knowledge graph.
Journal:
Journal of biomedical semantics
Published Date:
Aug 20, 2020
Abstract
BACKGROUND: Knowledge graphs can represent the contents of biomedical literature and databases as subject-predicate-object triples, thereby enabling comprehensive analyses that identify e.g. relationships between diseases. Some diseases are often diagnosed in patients in specific temporal sequences, which are referred to as disease trajectories. Here, we determine whether a sequence of two diseases forms a trajectory by leveraging the predicate information from paths between (disease) proteins in a knowledge graph. Furthermore, we determine the added value of directional information of predicates for this task. To do so, we create four feature sets, based on two methods for representing indirect paths, and both with and without directional information of predicates (i.e., which protein is considered subject and which object). The added value of the directional information of predicates is quantified by comparing the classification performance of the feature sets that include or exclude it.