Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
Journal:
Medical physics
Published Date:
Aug 27, 2020
Abstract
PURPOSE: Deep learning-based whole-heart segmentation in coronary computed tomography angiography (CCTA) allows the extraction of quantitative imaging measures for cardiovascular risk prediction. Automatic extraction of these measures in patients undergoing only non-contrast-enhanced CT (NCCT) scanning would be valuable, but defining a manual reference standard that would allow training a deep learning-based method for whole-heart segmentation in NCCT is challenging, if not impossible. In this work, we leverage dual-energy information provided by a dual-layer detector CT scanner to obtain a reference standard in virtual non-contrast (VNC) CT images mimicking NCCT images, and train a three-dimensional (3D) convolutional neural network (CNN) for the segmentation of VNC as well as NCCT images.