Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches.
Journal:
Journal of neuroengineering and rehabilitation
Published Date:
Sep 29, 2020
Abstract
BACKGROUND: Accurate prediction of motor recovery after stroke is critical for treatment decisions and planning. Machine learning has been proposed to be a promising technique for outcome prediction because of its high accuracy and ability to process large volumes of data. It has been used to predict acute stroke recovery; however, whether machine learning would be effective for predicting rehabilitation outcomes in chronic stroke patients for common contemporary task-oriented interventions remains largely unexplored. This study aimed to determine the accuracy and performance of machine learning to predict clinically significant motor function improvements after contemporary task-oriented intervention in chronic stroke patients and identify important predictors for building machine learning prediction models.