Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records.
Journal:
Computer methods and programs in biomedicine
Published Date:
Sep 8, 2020
Abstract
BACKGROUND AND OBJECTIVE: Cardiac arrhythmia, which is an abnormal heart rhythm, is a common clinical problem in cardiology. Detection of arrhythmia on an extended duration electrocardiogram (ECG) is done based on initial algorithmic software screening, with final visual validation by cardiologists. It is a time consuming and subjective process. Therefore, fully automated computer-assisted detection systems with a high degree of accuracy have an essential role in this task. In this study, we proposed an effective deep neural network (DNN) model to detect different rhythm classes from a new ECG database.