Artificial Intelligence and Machine Learning in Radiology: Current State and Considerations for Routine Clinical Implementation.

Journal: Investigative radiology
Published Date:

Abstract

Although artificial intelligence (AI) has been a focus of medical research for decades, in the last decade, the field of radiology has seen tremendous innovation and also public focus due to development and application of machine-learning techniques to develop new algorithms. Interestingly, this innovation is driven simultaneously by academia, existing global medical device vendors, and-fueled by venture capital-recently founded startups. Radiologists find themselves once again in the position to lead this innovation to improve clinical workflows and ultimately patient outcome. However, although the end of today's radiologists' profession has been proclaimed multiple times, routine clinical application of such AI algorithms in 2020 remains rare. The goal of this review article is to describe in detail the relevance of appropriate imaging data as a bottleneck for innovation, provide insights into the many obstacles for technical implementation, and give additional perspectives to radiologists who often view AI solely from their clinical role. As regulatory approval processes for such medical devices are currently under public discussion and the relevance of imaging data is transforming, radiologists need to establish themselves as the leading gatekeepers for evolution of their field and be aware of the many stakeholders and sometimes conflicting interests.

Authors

  • Julian L Wichmann
    Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.
  • Martin J Willemink
    Departments of Radiology (L.D.H., G.M., K.H., M.K., M.J.W., A.M.S., D.F.) and Surgery (M.F.), Stanford University School of Medicine, 300 Pasteur Dr, Room S-072, Stanford, CA 94305-5105.
  • Carlo N De Cecco
    Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr, Charleston, SC 29425-2260 (S.S.M., D.M., M.v.A., C.N.D.C., R.R.B., C.T., A.V.S., A.M.F., B.E.J., L.P.G., U.J.S.); Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany (S.S.M., T.J.V.); Stanford University School of Medicine, Department of Radiology, Stanford, Calif (D.M.); Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (C.N.D.C.); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (R.R.B.); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany (C.T.); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany (C.T.); Siemens Medical Solutions USA, Malvern, Pa (P.S.); and Department of Emergency Medicine, Medical University of South Carolina, Charleston, SC (A.J.M.).