DeepHistReg: Unsupervised Deep Learning Registration Framework for Differently Stained Histology Samples.
Journal:
Computer methods and programs in biomedicine
Published Date:
Oct 24, 2020
Abstract
BACKGROUND AND OBJECTIVE: The use of several stains during histology sample preparation can be useful for fusing complementary information about different tissue structures. It reveals distinct tissue properties that combined may be useful for grading, classification, or 3-D reconstruction. Nevertheless, since the slide preparation is different for each stain and the procedure uses consecutive slices, the tissue undergoes complex and possibly large deformations. Therefore, a nonrigid registration is required before further processing. The nonrigid registration of differently stained histology images is a challenging task because: (i) the registration must be fully automatic, (ii) the histology images are extremely high-resolution, (iii) the registration should be as fast as possible, (iv) there are significant differences in the tissue appearance, and (v) there are not many unique features due to a repetitive texture.