Artificial Intelligence in the assessment of diabetic retinopathy from fundus photographs.

Journal: Seminars in ophthalmology
Published Date:

Abstract

: Over the next 25 years, the global prevalence of diabetes is expected to grow to affect 700 million individuals. Consequently, an unprecedented number of patients will be at risk for vision loss from diabetic eye disease. This demand will almost certainly exceed the supply of eye care professionals to individually evaluate each patient on an annual basis, signaling the need for 21st century tools to assist our profession in meeting this challenge. Methods: Review of available literature on artificial intelligence (AI) as applied to diabetic retinopathy (DR) detection and prediction: The field of AI has seen exponential growth in evaluating fundus photographs for DR. AI systems employ machine learning and artificial neural networks to teach themselves how to grade DR from libraries of tens of thousands of images and may be able to predict future DR progression based on baseline fundus photographs. : AI algorithms are highly promising for the purposes of DR detection and will likely be able to reliably predict DR worsening in the future. A deeper understanding of these systems and how they interpret images is critical as they transition from the bench into the clinic.

Authors

  • Michael J Gilbert
    Joslin Diabetes Center, Beetham Eye Institute , Boston, MA, United States.
  • Jennifer K Sun
    Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.