A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls.
Journal:
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
PMID:
33341465
Abstract
It is necessary to monitor the mechanical properties of arteries which directly related to cardiovascular diseases (CVDs) in the early stages. In this study, we proposed a new method based on deep learning (DL) to track the displacement of the vessel wall from the ultrasound radio-frequency (RF) signals, which is a key technique to achieve quantitative measurement of vascular biomechanics. In comparison with traditional method, both results on simulation and experimental carotid artery data demonstrated that the DL method has higher accuracy for motion tracking of artery walls. Hence, the DL method can be widely applied so that can predict the early pathology of cardiovascular system.