Analyzing magnetic resonance imaging data from glioma patients using deep learning.

Journal: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Published Date:

Abstract

The quantitative analysis of images acquired in the diagnosis and treatment of patients with brain tumors has seen a significant rise in the clinical use of computational tools. The underlying technology to the vast majority of these tools are machine learning methods and, in particular, deep learning algorithms. This review offers clinical background information of key diagnostic biomarkers in the diagnosis of glioma, the most common primary brain tumor. It offers an overview of publicly available resources and datasets for developing new computational tools and image biomarkers, with emphasis on those related to the Multimodal Brain Tumor Segmentation (BraTS) Challenge. We further offer an overview of the state-of-the-art methods in glioma image segmentation, again with an emphasis on publicly available tools and deep learning algorithms that emerged in the context of the BraTS challenge.

Authors

  • Bjoern Menze
  • Fabian Isensee
  • Roland Wiest
    Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.
  • Bene Wiestler
    Neuroradiology, TUM, Munich, Germany. Electronic address: b.wiestler@tum.de.
  • Klaus Maier-Hein
    Medical Image Analysis, Division Medical Image Computing, DKFZ Heidelberg, Germany.
  • Mauricio Reyes
    Center for Artificial Intelligence in Medicine, University of Bern, Bern, Switzerland.
  • Spyridon Bakas
    Perelman School of Medicine, Philadelphia, PA, USA.