Gastrointestinal Tract Disease Classification from Wireless Endoscopy Images Using Pretrained Deep Learning Model.

Journal: Computational and mathematical methods in medicine
PMID:

Abstract

Wireless capsule endoscopy is a noninvasive wireless imaging technology that becomes increasingly popular in recent years. One of the major drawbacks of this technology is that it generates a large number of photos that must be analyzed by medical personnel, which takes time. Various research groups have proposed different image processing and machine learning techniques to classify gastrointestinal tract diseases in recent years. Traditional image processing algorithms and a data augmentation technique are combined with an adjusted pretrained deep convolutional neural network to classify diseases in the gastrointestinal tract from wireless endoscopy images in this research. We take advantage of pretrained models VGG16, ResNet-18, and GoogLeNet, a convolutional neural network (CNN) model with adjusted fully connected and output layers. The proposed models are validated with a dataset consisting of 6702 images of 8 classes. The VGG16 model achieved the highest results with 96.33% accuracy, 96.37% recall, 96.5% precision, and 96.5% F1-measure. Compared to other state-of-the-art models, the VGG16 model has the highest Matthews Correlation Coefficient value of 0.95 and Cohen's kappa score of 0.96.

Authors

  • J Yogapriya
    Department of Computer Science and Engineering, Kongunadu College of Engineering and Technology, Trichy, 621215 Tamil Nadu, India.
  • Venkatesan Chandran
    Department of Electronics and Communication Engineering, Dr.N.G.P Institute of Technology, Coimbatore, 641048 Tamilnadu, India.
  • M G Sumithra
    Department of Electronics and Communication Engineering, Dr.N.G.P Institute of Technology, Coimbatore, 641048 Tamilnadu, India.
  • P Anitha
    Department of EEE, Adi Shankra Institute of Engineering and Technology, Kalady, Ernakulam, Kerala 683574, India.
  • P Jenopaul
    Department of EEE, Adi Shankra Institute of Engineering and Technology, Kalady, Ernakulam, Kerala 683574, India.
  • C Suresh Gnana Dhas
    Department of Computer Science, Ambo University, Ambo University, Ambo, Post Box No.: 19, Ethiopia.