Feature Selection on Elite Hybrid Binary Cuckoo Search in Binary Label Classification.
Journal:
Computational and mathematical methods in medicine
PMID:
34055039
Abstract
For the low optimization accuracy of the cuckoo search algorithm, a new search algorithm, the Elite Hybrid Binary Cuckoo Search (EHBCS) algorithm, is improved by feature weighting and elite strategy. The EHBCS algorithm has been designed for feature selection on a series of binary classification datasets, including low-dimensional and high-dimensional samples by SVM classifier. The experimental results show that the EHBCS algorithm achieves better classification performances compared with binary genetic algorithm and binary particle swarm optimization algorithm. Besides, we explain its superiority in terms of standard deviation, sensitivity, specificity, precision, and -measure.