Generating Longitudinal Atrophy Evaluation Datasets on Brain Magnetic Resonance Images Using Convolutional Neural Networks and Segmentation Priors.
Journal:
Neuroinformatics
Published Date:
Jan 2, 2021
Abstract
Brain atrophy quantification plays a fundamental role in neuroinformatics since it permits studying brain development and neurological disorders. However, the lack of a ground truth prevents testing the accuracy of longitudinal atrophy quantification methods. We propose a deep learning framework to generate longitudinal datasets by deforming T1-w brain magnetic resonance imaging scans as requested through segmentation maps. Our proposal incorporates a cascaded multi-path U-Net optimised with a multi-objective loss which allows its paths to generate different brain regions accurately. We provided our model with baseline scans and real follow-up segmentation maps from two longitudinal datasets, ADNI and OASIS, and observed that our framework could produce synthetic follow-up scans that matched the real ones (Total scans= 584; Median absolute error: 0.03 ± 0.02; Structural similarity index: 0.98 ± 0.02; Dice similarity coefficient: 0.95 ± 0.02; Percentage of brain volume change: 0.24 ± 0.16; Jacobian integration: 1.13 ± 0.05). Compared to two relevant works generating brain lesions using U-Nets and conditional generative adversarial networks (CGAN), our proposal outperformed them significantly in most cases (p < 0.01), except in the delineation of brain edges where the CGAN took the lead (Jacobian integration: Ours - 1.13 ± 0.05 vs CGAN - 1.00 ± 0.02; p < 0.01). We examined whether changes induced with our framework were detected by FAST, SPM, SIENA, SIENAX, and the Jacobian integration method. We observed that induced and detected changes were highly correlated (Adj. R > 0.86). Our preliminary results on harmonised datasets showed the potential of our framework to be applied to various data collections without further adjustment.