AI-based mobile application to fight antibiotic resistance.

Journal: Nature communications
Published Date:

Abstract

Antimicrobial resistance is a major global health threat and its development is promoted by antibiotic misuse. While disk diffusion antibiotic susceptibility testing (AST, also called antibiogram) is broadly used to test for antibiotic resistance in bacterial infections, it faces strong criticism because of inter-operator variability and the complexity of interpretative reading. Automatic reading systems address these issues, but are not always adapted or available to resource-limited settings. We present an artificial intelligence (AI)-based, offline smartphone application for antibiogram analysis. The application captures images with the phone's camera, and the user is guided throughout the analysis on the same device by a user-friendly graphical interface. An embedded expert system validates the coherence of the antibiogram data and provides interpreted results. The fully automatic measurement procedure of our application's reading system achieves an overall agreement of 90% on susceptibility categorization against a hospital-standard automatic system and 98% against manual measurement (gold standard), with reduced inter-operator variability. The application's performance showed that the automatic reading of antibiotic resistance testing is entirely feasible on a smartphone. Moreover our application is suited for resource-limited settings, and therefore has the potential to significantly increase patients' access to AST worldwide.

Authors

  • Marco Pascucci
    The MSF Foundation, Paris, France.
  • Guilhem Royer
    Université de Paris, IAME, UMR1137, INSERM, Paris, France.
  • Jakub Adamek
    Google.org, https://www.google.org, USA.
  • Mai Al Asmar
    MSF Amman Hospital, Amman, Jordan.
  • David Aristizabal
    Google.org, https://www.google.org, USA.
  • Laetitia Blanche
    The MSF Foundation, Paris, France.
  • Amine Bezzarga
    The MSF Foundation, Paris, France.
  • Guillaume Boniface-Chang
    Google.org, https://www.google.org, USA.
  • Alex Brunner
    Google.org, https://www.google.org, USA.
  • Christian Curel
    i2a, Montpellier, France.
  • Gabriel Dulac-Arnold
    Google Research, Brain Team, Paris, France.
  • Rasheed M Fakhri
    MSF Amman Hospital, Amman, Jordan.
  • Nada Malou
    The MSF Foundation, Paris, France. nada.malou@paris.msf.org.
  • Clara Nordon
    The MSF Foundation, Paris, France.
  • Vincent Runge
    Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d'Evry, 91037, Evry-Courcouronnes, France.
  • Franck Samson
    Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d'Evry, 91037, Evry-Courcouronnes, France.
  • Ellen Sebastian
    Google.org, https://www.google.org, USA.
  • Dena Soukieh
    Google.org, https://www.google.org, USA.
  • Jean-Philippe Vert
    MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, Institut Curie, 75248 Paris Cedex and INSERM U900, 75248 Paris Cedex, France.
  • Christophe Ambroise
    Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d'Evry, 91037, Evry-Courcouronnes, France. amadoui@genoscope.cns.fr.
  • Mohammed-Amin Madoui
    Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91037, Evry-Courcouronnes, France. christophe.ambroise@univ-evry.fr.