Attention Guided Lymph Node Malignancy Prediction in Head and Neck Cancer.
Journal:
International journal of radiation oncology, biology, physics
Published Date:
Feb 6, 2021
Abstract
PURPOSE: Accurate lymph node (LN) malignancy classification is essential for treatment target identification in head and neck cancer (HNC) radiation therapy. Given the constraints imposed by relatively small sample sizes in real-world medical applications, to classify LN malignancy status accurately, we proposed an attention-guided classification (AGC) scheme that (1) incorporates human knowledge (ie, LN contours) into model training to guide model's "learning" direction, alleviating the critical requirement of large training samples by deep learning approaches; and (2) does not require accurate delineation of LNs in the inference stage but can highlight the discriminative region nearby the LN, which is important for malignancy determination.