OBJECTIVE: To develop explainable machine learning models that integrate multimodal imaging and pathological biomarkers to predict axillary lymph node metastasis (ALNM) in breast cancer patients and assess their clinical utility.
Cervical cancer is a leading cause of death from malignant tumors in women, and accurate evaluation of occult lymph node metastasis (OLNM) is crucial for optimal treatment. This study aimed to develop several predictive models-including Clinical mode...
The purpose of this study was to create and validate an ultrasound-based graph convolutional network (US-based GCN) model for the prediction of axillary lymph node metastasis (ALNM) in patients with breast cancer. A total of 820 eligible patients wit...
This study sought to develop a radiomics model capable of predicting axillary lymph node metastasis (ALNM) in patients with invasive breast cancer (IBC) based on dual-sequence magnetic resonance imaging(MRI) of diffusion-weighted imaging (DWI) and dy...
To develop and validate artificial intelligence models based on contrast-enhanced CT(CECT) images of venous phase using deep learning (DL) and Radiomics approaches to predict lymphovascular invasion in gastric cancer prior to surgery. We retrospectiv...
BACKGROUND: Endobronchial ultrasound (EBUS) is a widely used imaging modality for evaluating thoracic lymph nodes (LNs), particularly in the staging of lung cancer. Artificial intelligence (AI)-assisted EBUS has emerged as a promising tool to enhance...
BACKGROUND: Papillary thyroid microcarcinoma (PTMC) is the most common malignant subtype of thyroid cancer. Preoperative assessment of the risk of central compartment lymph node metastasis (CCLNM) can provide scientific support for personalized treat...
PURPOSE: In the context of precision medicine, radiomics has become a key technology in solving medical problems. For adenocarcinoma of esophagogastric junction (AEG), developing a preoperative CT-based prediction model for AEG invasion and lymph nod...
To develop and validate a machine learning-based prediction model to predict axillary lymph node (ALN) metastasis in triple negative breast cancer (TNBC) patients using magnetic resonance imaging (MRI) and clinical characteristics. This retrospective...
BACKGROUND: This study developed an explainable machine learning model for baseline internal mammary lymph node metastasis (IMNM) in breast cancer patients.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.