Deep Learning-based Classification of Resting-state fMRI Independent-component Analysis.

Journal: Neuroinformatics
Published Date:

Abstract

Functional connectivity analyses of fMRI data have shown that the activity of the brain at rest is spatially organized into resting-state networks (RSNs). RSNs appear as groups of anatomically distant but functionally tightly connected brain regions. Inter-RSN intrinsic connectivity analyses may provide an optimal spatial level of integration to analyze the variability of the functional connectome. Here we propose a deep learning approach to enable the automated classification of individual independent-component (IC) decompositions into a set of predefined RSNs. Two databases were used in this work, BIL&GIN and MRi-Share, with 427 and 1811 participants, respectively. We trained a multilayer perceptron (MLP) to classify each IC as one of 45 RSNs, using the IC classification of 282 participants in BIL&GIN for training and a 5-dimensional parameter grid search for hyperparameter optimization. It reached an accuracy of 92 %. Predictions for the remaining individuals in BIL&GIN were tested against the original classification and demonstrated good spatial overlap between the cortical RSNs. As a first application, we created an RSN atlas based on MRi-Share. This atlas defined a brain parcellation in 29 RSNs covering 96 % of the gray matter. Second, we proposed an individual-based analysis of the subdivision of the default-mode network into 4 networks. Minimal overlap between RSNs was found except in the angular gyrus and potentially in the precuneus. We thus provide the community with an individual IC classifier that can be used to analyze one dataset or to statistically compare different datasets for RSN spatial definitions.

Authors

  • Victor Nozais
    Ginesislab, Bordeaux, France.
  • Philippe Boutinaud
    Ginesislab, Bordeaux, France.
  • Violaine Verrecchia
    Ginesislab, Bordeaux, France.
  • Marie-Fateye Gueye
    Ginesislab, Bordeaux, France.
  • Pierre-Yves Hervé
    Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.
  • Christophe Tzourio
    Bordeaux Population Health Research Center, UMR1219, Bordeaux University, Inserm, Bordeaux, France.
  • Bernard Mazoyer
    Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.
  • Marc Joliot
    Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.