Reconstructing Undersampled Photoacoustic Microscopy Images Using Deep Learning.

Journal: IEEE transactions on medical imaging
Published Date:

Abstract

One primary technical challenge in photoacoustic microscopy (PAM) is the necessary compromise between spatial resolution and imaging speed. In this study, we propose a novel application of deep learning principles to reconstruct undersampled PAM images and transcend the trade-off between spatial resolution and imaging speed. We compared various convolutional neural network (CNN) architectures, and selected a Fully Dense U-net (FD U-net) model that produced the best results. To mimic various undersampling conditions in practice, we artificially downsampled fully-sampled PAM images of mouse brain vasculature at different ratios. This allowed us to not only definitively establish the ground truth, but also train and test our deep learning model at various imaging conditions. Our results and numerical analysis have collectively demonstrated the robust performance of our model to reconstruct PAM images with as few as 2% of the original pixels, which can effectively shorten the imaging time without substantially sacrificing the image quality.

Authors

  • Anthony DiSpirito
  • Daiwei Li
  • Tri Vu
  • Maomao Chen
  • Dong Zhang
    Institute of Acoustics, Nanjing University, Nanjing 210093, China.
  • Jianwen Luo
    Departmemt of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
  • Roarke Horstmeyer
    Biomedical Engineering Department Duke University Durham NC 27708 USA.
  • Junjie Yao