Development of a portable oil type classifier using laser-induced fluorescence spectrometer coupled with chemometrics.

Journal: Journal of hazardous materials
Published Date:

Abstract

Due to the recurrent small spills, oil pollution along coastal regions is still a major environmental issue. Standardized oil fingerprinting techniques are useful for oil spill identifications, but time- and resource-consuming. There have been ongoing needs for simple yet rapid approach for field screening of oil spill. Laser induced fluorescence (LIF) technology can be incorporated into a spectrometer, and with the integration of chemometrics can be consolidated as a potentially useful portable oil type classification device. Using a LIF spectrometer, 775 oil spectra were calibrated into supervised classification models and validated with 162 oil spectra. Reliability of the device to accurately remove background emission from fluorescence spectra was verified. Prediction performance and model robustness were further validated by comparison between commonly used classification models such as partial least square discriminant analysis (PLS-DA) and support vector machine-discriminant analysis (SVM-DA). Robustness in both models were comparable with PLS-DA having a lower number of misclassification (PLS-DA: 5.50%, SVM-DA: 13.8%) while SVM-DA having a lower number of unassigned samples (PLS-DA: 10.9%; SVM-DA: 16 1.39%). This study explicitly demonstrated the development of a new convenient and handy device which can be used as part of the screening process for oil spill fingerprinting.

Authors

  • Andrew Loh
    Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea.
  • Sung Yong Ha
    Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea.
  • Donghwi Kim
    Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea.
  • Joonseok Lee
    Samsung SDS AI Research Center, 06765 Seoul, Korea.
  • Kyonghoon Baek
    MachTech Co., Ltd., Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
  • Un Hyuk Yim
    Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address: uhyim@kiost.ac.kr.