Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models.

Journal: Water research
Published Date:

Abstract

Antibiotic resistance genes (ARGs) have been reported to threaten the public health of beachgoers worldwide. Although ARG monitoring and beach guidelines are necessary, substantial efforts are required for ARG sampling and analysis. Accordingly, in this study, we predicted ARGs occurrence that are primarily found on the coast after rainfall using a conventional long short-term memory (LSTM), LSTM-convolutional neural network (CNN) hybrid model, and input attention (IA)-LSTM. To develop the models, 10 categories of environmental data collected at 30-min intervals and concentration data of 4 types of major ARGs (i.e., aac(6'-Ib-cr), bla, sul1, and tetX) obtained at the Gwangalli Beach in South Korea, between 2018 and 2019 were used. When individually predicting ARGs occurrence, the conventional LSTM and IA-LSTM exhibited poor R values during training and testing. In contrast, the LSTM-CNN exhibited a 2-6-times improvement in accuracy over those of the conventional LSTM and IA-LSTM. However, when predicting all ARGs occurrence simultaneously, the IA-LSTM model exhibited a superior performance overall compared to that of LSTM-CNN. Additionally, the influence of environmental variables on prediction was investigated using the IA-LSTM model, and the ranges of input variables that affect each ARG were identified. Consequently, this study demonstrated the possibility of predicting the occurrence and distribution of major ARGs at the beach based on various environmental variables, and the results are expected to contribute to management of ARG occurrence at a recreational beach.

Authors

  • Jiyi Jang
    Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919 South Korea.
  • Ather Abbas
    Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919 South Korea.
  • Minjeong Kim
  • Jingyeong Shin
    Department of Civil and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
  • Young Mo Kim
    School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
  • Kyung Hwa Cho
    School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea.