Drug properties and host factors contribute to biochemical presentation of drug-induced liver injury: a prediction model from a machine learning approach.

Journal: Archives of toxicology
Published Date:

Abstract

Drug-induced liver injury (DILI) presentation varies biochemically and histologically. Certain drugs present quite consistent injury patterns, i.e., DILI signatures. In contrast, others are manifested as broader types of liver injury. The variety of DILI presentations by a single drug suggests that both drugs and host factors may contribute to the phenotype. However, factors determining the DILI types have not been yet elucidated. Identifying such factors may help to accurately predict the injury types based on drugs and host information and assist the clinical diagnosis of DILI. Using prospective DILI registry datasets, we sought to explore and validate the associations of biochemical injury types at the time of DILI recognition with comprehensive information on drug properties and host factors. Random forest models identified a set of drug properties and host factors that differentiate hepatocellular from cholestatic damage with reasonable accuracy (69-84%). A simplified logistic regression model developed for practical use, consisting of patient's age, drug's lipoaffinity, and hybridization ratio, achieved a fair prediction (68-74%), but suggested potential clinical usability, computing the likelihood of liver injury type based on two properties of drugs taken by a patient and patient's age. In summary, considering both drug and host factors in evaluating DILI risk and phenotypes open an avenue for future DILI research and aid in the refinement of causality assessment.

Authors

  • Andres Gonzalez-Jimenez
    Bioinformatic Platform, Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.
  • Ayako Suzuki
    Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
  • Minjun Chen
    Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States.
  • Kristin Ashby
    Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA.
  • Ismael Alvarez-Alvarez
    UGC Aparato Digestivo and Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain.
  • Raul J Andrade
    UGC Aparato Digestivo and Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain.
  • M Isabel Lucena
    UGC Aparato Digestivo and Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain. lucena@uma.es.