High-throughput label-free detection of DNA-to-RNA transcription inhibition using brightfield microscopy and deep neural networks.

Journal: Computers in biology and medicine
Published Date:

Abstract

Drug discovery is in constant evolution and major advances have led to the development of in vitro high-throughput technologies, facilitating the rapid assessment of cellular phenotypes. One such phenotype is immunogenic cell death, which occurs partly as a consequence of inhibited RNA synthesis. Automated cell-imaging offers the possibility of combining high-throughput with high-content data acquisition through the simultaneous computation of a multitude of cellular features. Usually, such features are extracted from fluorescence images, hence requiring labeling of the cells using dyes with possible cytotoxic and phototoxic side effects. Recently, deep learning approaches have allowed the analysis of images obtained by brightfield microscopy, a technique that was for long underexploited, with the great advantage of avoiding any major interference with cellular physiology or stimulatory compounds. Here, we describe a label-free image-based high-throughput workflow that accurately detects the inhibition of DNA-to-RNA transcription. This is achieved by combining two successive deep convolutional neural networks, allowing (1) to automatically detect cellular nuclei (thus enabling monitoring of cell death) and (2) to classify the extracted nuclear images in a binary fashion. This analytical pipeline is R-based and can be easily applied to any microscopic platform.

Authors

  • Allan Sauvat
    Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France. Electronic address: allan.sauvat@gustaveroussy.fr.
  • Giulia Cerrato
    Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France; Faculty of Medicine, Université Paris Saclay, Kremlin-Bicêtre, France.
  • Juliette Humeau
    Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
  • Marion Leduc
    Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
  • Oliver Kepp
    Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France.
  • Guido Kroemer
    Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Po^le de Biologie, Ho^pital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.