Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures.

Journal: Computer methods and programs in biomedicine
Published Date:

Abstract

BACKGROUND AND OBJECTIVES: The multiple chest x-ray datasets released in the last years have ground-truth labels intended for different computer vision tasks, suggesting that performance in automated chest x-ray interpretation might improve by using a method that can exploit diverse types of annotations. This work presents a Deep Learning method based on the late fusion of different convolutional architectures, that allows training with heterogeneous data with a simple implementation, and evaluates its performance on independent test data. We focused on obtaining a clinically useful tool that could be successfully integrated into a hospital workflow.

Authors

  • Candelaria Mosquera
    Health Informatics Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina; Universidad Tecnológica Nacional, Av. Medrano 951, Ciudad Autónoma de Buenos Aires C1179AAQ, Argentina. Electronic address: candelaria.mosquera@hospitalitaliano.org.ar.
  • Facundo Nahuel Diaz
    Radiology Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina; Universidad de Buenos Aires. Facultad de Medicina. II Cátedra de Anatomía. Buenos Aires, Argentina. Electronic address: facundo.diaz@hospitalitaliano.org.ar.
  • Fernando Binder
    Health Informatics Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina. Electronic address: fernando.binder@hospitalitaliano.org.ar.
  • José Martín Rabellino
    Radiology Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina. Electronic address: jose.rabellino@hospitalitaliano.org.ar.
  • Sonia Elizabeth Benítez
    Health Informatics Department, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Medicina Traslacional e Ingeniería Biomédica, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires.
  • Alejandro Daniel Beresñak
    Radiology Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina. Electronic address: alejandro.beresnak@hospitalitaliano.org.ar.
  • Alberto Seehaus
    Radiology Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina. Electronic address: alberto.seehaus@hospitalitaliano.org.ar.
  • Gabriel Ducrey
    Radiology Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina. Electronic address: gabriel.ducrey@hospitalitaliano.org.ar.
  • Jorge Alberto Ocantos
    Radiology Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina. Electronic address: jorge.ocantos@hospitalitaliano.org.ar.
  • Daniel Roberto Luna
    Health Informatics Department, Hospital Italiano de Buenos Aires, Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires C1199AAB, Argentina. Electronic address: daniel.luna@hospitalitaliano.org.ar.