In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment.

Journal: Sensors (Basel, Switzerland)
PMID:

Abstract

An early estimation of the exact number of fruits, flowers, and trees helps farmers to make better decisions on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on manual counting of fruits or flowers by workers is a time consuming and expensive process and it is not feasible for large fields. Automatic yield estimation based on robotic agriculture provides a viable solution in this regard. In a typical image classification process, the task is not only to specify the presence or absence of a given object on a specific location, while counting how many objects are present in the scene. The success of these tasks largely depends on the availability of a large amount of training samples. This paper presents a detector of bunches of one fruit, grape, based on a deep convolutional neural network trained to detect vine bunches directly on the field. Experimental results show a 91% mean Average Precision.

Authors

  • Luca Ghiani
    Department of Agricultural Sciences, University of Sassari, Viale Italia 39 a, 07100 Sassari, Italy.
  • Alberto Sassu
    Department of Agricultural Sciences, University of Sassari, Viale Italia 39 a, 07100 Sassari, Italy.
  • Francesca Palumbo
    Intelligent System DEsign and Applications (IDEA) Group, Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy.
  • Luca Mercenaro
    Department of Agricultural Sciences, University of Sassari, Viale Italia 39 a, 07100 Sassari, Italy.
  • Filippo Gambella
    Department of Agricultural Sciences, University of Sassari, Viale Italia 39 a, 07100 Sassari, Italy.