Predicting lethal courses in critically ill COVID-19 patients using a machine learning model trained on patients with non-COVID-19 viral pneumonia.

Journal: Scientific reports
Published Date:

Abstract

In a pandemic with a novel disease, disease-specific prognosis models are available only with a delay. To bridge the critical early phase, models built for similar diseases might be applied. To test the accuracy of such a knowledge transfer, we investigated how precise lethal courses in critically ill COVID-19 patients can be predicted by a model trained on critically ill non-COVID-19 viral pneumonia patients. We trained gradient boosted decision tree models on 718 (245 deceased) non-COVID-19 viral pneumonia patients to predict individual ICU mortality and applied it to 1054 (369 deceased) COVID-19 patients. Our model showed a significantly better predictive performance (AUROC 0.86 [95% CI 0.86-0.87]) than the clinical scores APACHE2 (0.63 [95% CI 0.61-0.65]), SAPS2 (0.72 [95% CI 0.71-0.74]) and SOFA (0.76 [95% CI 0.75-0.77]), the COVID-19-specific mortality prediction models of Zhou (0.76 [95% CI 0.73-0.78]) and Wang (laboratory: 0.62 [95% CI 0.59-0.65]; clinical: 0.56 [95% CI 0.55-0.58]) and the 4C COVID-19 Mortality score (0.71 [95% CI 0.70-0.72]). We conclude that lethal courses in critically ill COVID-19 patients can be predicted by a machine learning model trained on non-COVID-19 patients. Our results suggest that in a pandemic with a novel disease, prognosis models built for similar diseases can be applied, even when the diseases differ in time courses and in rates of critical and lethal courses.

Authors

  • Gregor Lichtner
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Felix Balzer
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Stefan Haufe
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany.
  • Niklas Giesa
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Informatics, Berlin, Germany.
  • Fridtjof Schiefenhövel
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Malte Schmieding
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Carlo Jurth
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Wolfgang Kopp
    Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 10115, Berlin, Germany. wolfgang.kopp@mdc-berlin.de.
  • Altuna Akalin
    Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin, Germany. altuna.akalin@mdc-berlin.de.
  • Stefan J Schaller
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Steffen Weber-Carstens
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Claudia Spies
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany.
  • Falk von Dincklage
    Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charitéplatz 1, 10117, Berlin, Germany. falk.von-dincklage@charite.de.