MHSU-Net: A more versatile neural network for medical image segmentation.
Journal:
Computer methods and programs in biomedicine
Published Date:
Jun 6, 2021
Abstract
BACKGROUND AND OBJECTIVE: Medical image segmentation plays an important role in clinic. Recently, with the development of deep learning, many convolutional neural network (CNN)-based medical image segmentation algorithms have been proposed. Among them, U-Net is one of the most famous networks. However, the standard convolutional layers used by U-Net limit its capability to capture abundant features. Additionally, the consecutive maximum pooling operations in U-Net cause certain features to be lost. This paper aims to improve the feature extraction capability of U-Net and reduce the feature loss during the segmentation process. Meanwhile, the paper also focuses on improving the versatility of the proposed segmentation model.