Improving early diagnosis of rare diseases using Natural Language Processing in unstructured medical records: an illustration from Dravet syndrome.

Journal: Orphanet journal of rare diseases
Published Date:

Abstract

BACKGROUND: The growing use of Electronic Health Records (EHRs) is promoting the application of data mining in health-care. A promising use of big data in this field is to develop models to support early diagnosis and to establish natural history. Dravet Syndrome (DS) is a rare developmental and epileptic encephalopathy that commonly initiates in the first year of life with febrile seizures (FS). Age at diagnosis is often delayed after 2 years, as it is difficult to differentiate DS at onset from FS. We aimed to explore if some clinical terms (concepts) are significantly more used in the electronic narrative medical reports of individuals with DS before the age of 2 years compared to those of individuals with FS. These concepts would allow an earlier detection of patients with DS resulting in an earlier orientation toward expert centers that can provide early diagnosis and care.

Authors

  • Tommaso Lo Barco
    Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France.
  • Mathieu Kuchenbuch
    Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France.
  • Nicolas Garcelon
    Plateforme data science - institut des maladies génétiques Imagine, Inserm, centre de recherche des Cordeliers, UMR 1138 équipe 22, institut Imagine, Paris-Descartes, université Sorbonne- Paris Cité, Paris, France.
  • Antoine Neuraz
    Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, UMR 1138 Equipe 22, Paris Descartes, Sorbonne Paris Cité University, Paris, France.
  • Rima Nabbout
    Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France. rima.nabbout@aphp.fr.