Inhibition to crucial enzymes in the lethal effects of the dinoflagellate Karenia mikimotoi on the rotifer Brachionus plicatilis.
Journal:
Marine environmental research
Published Date:
Dec 21, 2019
Abstract
Blooms of the dinoflagellate Karenia mikimotoi have cause great financial losses to the marine aquaculture industry. However, the toxicity mechanism of this species is still not fully known. In this study, we evaluated the short-term effects of K. mikimotoi on the rotifer Brachionus plicatilis by micro and sub micro observing and by measuring inhibition of crucial enzymes. Behaviour disorder, mucus production, corona and cilium damage, vesical production, and body shrinkage occurred within 1 h after rotifers were treated with K. mikimotoi at a density of 3 × 10 cells/mL. Enzyme activity assays showed that K. mikimotoi at low densities significantly inhibited multiple enzymes within 3 h, and obvious density-effect trends were also observed. For instance, activity of esterase and acetylcholinesterase of rotifers significantly decreased to 94.3/83.3% and 82.8/66.9% of control treatment values in 30 and 1000 cells/mL algal treatment, respectively. Total ATPase and Na-K-ATPase activities of rotifers also decreased to 82.3% and 68.6% of control values in 1000 cells/mL treatment. The LDH releasement test and MDA tests showed no significant difference between algae treatment and control. It suggested that K. mikimotoi might not cause significant cytolysis and oxidative damage to rotifers, but may cause mortality by inhibiting the activity of crucial enzymes, which may lead to cell permeability disorder and body shrinkage.