Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea.

Journal: The Science of the total environment
Published Date:

Abstract

Prediction of rice yields at pixel scale rather than county scale can benefit crop management and scientific understanding because it is useful for monitoring how crop yields respond to various agricultural systems and environmental factors. In this study, we propose a methodology for the early prediction of rice yield at pixel scale combining a crop model and a deep learning model for different agricultural systems throughout South and North Korea. Initially, satellite-integrated crop models were applied to obtain a pixel-scale reference rice yield. Then, the pixel-scale reference rice yields were used as target labels in the deep learning model to leverage the advantages of crop models. Models of five different deep learning network architectures were employed to help determine the hybrid structure of long-short term memory (LSTM) and one-dimensional convolutional neural network (1D-CNN) layers by predicting the optimal model about two months ahead of harvest time. The suggested model showed good performance [R = 0.859, Nash-Sutcliffe model efficiency = 0.858, root mean squared error = 0.605 Mg ha], with specific spatial patterns of rice yields for South and North Korea. Analysis of the relative importance of the input variables showed the water-related index and maximum temperature in North Korea and the vegetation indices and geographic variables in South Korea to be crucial for predicting rice yields. The proposed approach successfully predicted and diagnosed rice yield at the pixel scale for inaccessible locations where reliable ground measurements are not available, especially North Korea.

Authors

  • Seungtaek Jeong
    Satellite Application Division, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea.
  • Jonghan Ko
    Applied Plant Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
  • Jong-Min Yeom
    Satellite Application Division, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea. Electronic address: yeomjm@kari.re.kr.