Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism: a feasibility study.

Journal: European radiology experimental
Published Date:

Abstract

BACKGROUND: Chronic pulmonary embolism (CPE) is a life-threatening disease easily misdiagnosed on computed tomography. We investigated a three-dimensional convolutional neural network (CNN) algorithm for detecting hypoperfusion in CPE from computed tomography pulmonary angiography (CTPA).

Authors

  • Tuomas Vainio
    HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, P.O. Box 340 (Haartmaninkatu 4), FI-00290, Helsinki, Finland. tuomas.j.vainio@helsinki.fi.
  • Teemu Mäkelä
    HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, P.O. Box 340, FI-00029 HUS, Helsinki, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.
  • Sauli Savolainen
    HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, P.O. Box 340 (Haartmaninkatu 4), FI-00290, Helsinki, Finland.
  • Marko Kangasniemi
    HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, P.O. Box 340 (Haartmaninkatu 4), FI-00290, Helsinki, Finland.