Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.

Journal: AJR. American journal of roentgenology
Published Date:

Abstract

Shoulder MRI using standard multiplanar sequences requires long scan times. Accelerated sequences have tradeoffs in noise and resolution. Deep learning-based reconstruction (DLR) may allow reduced scan time with preserved image quality. The purpose of this study was to compare standard shoulder MRI sequences and accelerated sequences without and with DLR in terms of image quality and diagnostic performance. This retrospective study included 105 patients (45 men, 60 women; mean age, 57.6 ± 10.9 [SD] years) who underwent a total of 110 3-T shoulder MRI examinations. Examinations included standard sequences (scan time, 9 minutes 23 seconds) and accelerated sequences (3 minutes 5 seconds; 67% reduction), both including fast spin-echo sequences in three planes. Standard sequences were reconstructed using the conventional pipeline; accelerated sequences were reconstructed using both the conventional pipeline and a commercially available DLR pipeline. Two radiologists independently assessed three image sets (standard sequence, accelerated sequence without DLR, and accelerated sequence with DLR) for subjective image quality and artifacts using 4-point scales (4 = highest quality) and identified pathologies of the subscapularis tendon, supraspinatus-infraspinatus tendon, long head of the biceps brachii tendon, and glenoid labrum. Interobserver agreement and agreement between image sets for the evaluated pathologies were assessed using weighted kappa statistics. In 27 patients who underwent arthroscopy, diagnostic performance was calculated using arthroscopic findings as a reference standard. Mean subjective image quality scores for readers 1 and 2 were 10.6 ± 1.2 and 10.5 ± 1.4 for the standard sequence, 8.1 ± 1.3 and 7.2 ± 1.1 for the accelerated sequence without DLR, and 10.7 ± 1.2 and 10.5 ± 1.6 for the accelerated sequence with DLR. Mean artifact scores for readers 1 and 2 were 9.3 ± 1.2 and 10.0 ± 1.0 for the standard sequence, 7.3 ± 1.3 and 9.1 ± 0.8 for the accelerated sequence without DLR, and 9.4 ± 1.2 and 9.8 ± 0.8 for the accelerated sequence with DLR. Interobserver agreement ranged from kappa of 0.813-0.951 except for accelerated sequence without DLR for the supraspinatus-infraspinatus tendon (κ = 0.673). Agreement between image sets ranged from kappa of 0.809-0.957 except for reader 1 for supraspinatus-infraspinatus tendon (κ = 0.663-0.700). Accuracy, sensitivity, and specificity for tears of the four structures were not different ( > .05) among image sets. Accelerated sequences with DLR provide 67% scan time reduction with similar subjective image quality, artifacts, and diagnostic performance to standard sequences. Accelerated sequences with DLR may provide an alternative to standard sequences for clinical shoulder MRI.

Authors

  • Seok Hahn
    Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Busan, 48108, South Korea.
  • Jisook Yi
    Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Busan, 48108, South Korea.
  • Ho-Joon Lee
    Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
  • Yedaun Lee
    From the Department of Computer Science, Hanyang University, Seoul, Republic of Korea (K.J.C.); Department of Radiology and Research Institute of Radiology (J.K.J., S.S.L., Y.S.S., W.H.S., H.S.K., J.Y., J.H.K., S.Y.K.) and Department of Diagnostic Pathology (E.S.Y.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (J.Y.C.); Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea (Y.L.); and Department of Radiology, Hanyang University Medical Center, Hanyang University School of Medicine, Seoul, Korea (B.K.K.).
  • Yun-Jung Lim
    Department of Radiology, Inje University College of Medicine, Haeundae Paik Hospital, Haeundae-ro 875, Busan, 48108, South Korea.
  • Jin-Young Bang
    Department of Orthopedic Surgery, Inje University College of Medicine, Haeundae Paik Hospital, Busan, South Korea.
  • Hyunwoong Kim
    Clinical Trial Center, Inje University College of Medicine, Haeundae Paik Hospital, Busan, South Korea.
  • Joonsung Lee
    From the Department of Radiology and Research Institute of Radiology (M.K., H.S.K., H.J.K., J.E.P., S.J.K.), Department of Clinical Epidemiology and Biostatistics (S.Y.P.), and Department of Neurosurgery (Y.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, South Korea; GE Healthcare Korea, Seoul, Korea (J.L.); GE Healthcare Canada, Calgary, Canada (M.R.L.); and Department of Radiology, University of Calgary, Calgary, Canada (M.R.L.).