Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
Journal:
Medical physics
Published Date:
Sep 13, 2021
Abstract
PURPOSE: For the planning and navigation of neurosurgery, we have developed a fully convolutional network (FCN)-based method for brain structure segmentation on magnetic resonance (MR) images. The capability of an FCN depends on the quality of the training data (i.e., raw data and annotation data) and network architectures. The improvement of annotation quality is a significant concern because it requires much labor for labeling organ regions. To address this problem, we focus on skip connection architectures and reveal which skip connections are effective for training FCNs using sparsely annotated brain images.