Machine Learning for Real-Time Heart Disease Prediction.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Heart-related anomalies are among the most common causes of death worldwide. Patients are often asymptomatic until a fatal event happens, and even when they are under observation, trained personnel is needed in order to identify a heart anomaly. In the last decades, there has been increasing evidence of how Machine Learning can be leveraged to detect such anomalies, thanks to the availability of Electrocardiograms (ECG) in digital format. New developments in technology have allowed to exploit such data to build models able to analyze the patterns in the occurrence of heart beats, and spot anomalies from them. In this work, we propose a novel methodology to extract ECG-related features and predict the type of ECG recorded in real time (less than 30 milliseconds). Our models leverage a collection of almost 40 thousand ECGs labeled by expert cardiologists across different hospitals and countries, and are able to detect 7 types of signals: Normal, AF, Tachycardia, Bradycardia, Arrhythmia, Other or Noisy. We exploit the XGBoost algorithm, a leading machine learning method, to train models achieving out of sample F1 Scores in the range 0.93 - 0.99. To our knowledge, this is the first work reporting high performance across hospitals, countries and recording standards.

Authors

  • Dimitris Bertsimas
    Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, John Silberholz, Alexander Weinstein, and Ying Daisy Zhuo, Massachusetts Institute of Technology, Cambridge; Eddy Chen, Massachusetts General Hospital Cancer Center; Harvard Medical School; Aymen A. Elfiky, Dana-Farber Cancer Institute; Brigham and Women's Hospital; Harvard Medical School, Boston, MA.
  • Luca Mingardi
    Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Bartolomeo Stellato
    Operations Research and Financial EngineeringPrinceton University, Princeton, NJ, 08544, USA.