On learning disentangled representations for individual treatment effect estimation.
Journal:
Journal of biomedical informatics
PMID:
34728379
Abstract
OBJECTIVE: Estimating the individualized treatment effect (ITE) from observational data is a challenging task due to selection bias, which results from the distributional discrepancy between different treatment groups caused by the dependence between features and assigned treatments. This dependence is induced by the factors related to the treatment assignment. We hypothesize that features consist of three types of latent factors: outcome-specific factors, treatment-specific factors and confounders. Then, we aim to reduce the influence of treatment-related factors, i.e., treatment-specific factors and confounders, on outcome prediction to mitigate the effects of selection bias.