Cancer survival prognosis with Deep Bayesian Perturbation Cox Network.
Journal:
Computers in biology and medicine
Published Date:
Nov 2, 2021
Abstract
BACKGROUND: The Cox proportional hazards model with neural networks is widely used to accurately predict survival outcome for choosing cancer treatment strategies. Although this method has shown outstanding performance in many tasks, it has encountered challenges when dealing with high-dimensional datasets. In this study, we point out that the Cox network has estimation bias in processing such datasets with a large number of censored samples. The estimation bias is composed of censored estimation bias and variance estimation bias, which limit the prediction performance of the model. In order to correct this bias, this paper proposes the Deep Bayesian Perturbation Cox Network (DBP), which introduces Bayesian prior knowledge about censored samples to optimize the training process of the neural network. Specifically, the model uses a sampling module called Bayesian Perturbation to approximate the prior knowledge, which can be used as a component for other Cox-based neural networks.