An Intelligence Method for Recognizing Multiple Defects in Rail.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Ultrasonic guided waves are sensitive to many different types of defects and have been studied for defect recognition in rail. However, most fault recognition algorithms need to extract features from the time domain, frequency domain, or time-frequency domain based on experience or professional knowledge. This paper proposes a new method for identifying many different types of rail defects. The segment principal components analysis (S-PCA) is developed to extract characteristics from signals collected by sensors located at different positions. Then, the Support Vector Machine (SVM) model is used to identify different defects depending on the features extracted. Combining simulations and experiments of the rails with different kinds of defects are established to verify the effectiveness of the proposed defect identification techniques, such as crack, corrosion, and transverse crack under the shelling. There are nine channels of the excitation-reception to acquire guided wave detection signals. The results show that the defect classification accuracy rates are 96.29% and 96.15% for combining multiple signals, such as the method of single-point excitation and multi-point reception, or the method of multi-point excitation and reception at a single point.

Authors

  • Fei Deng
  • Shu-Qing Li
    School of Electrical and Electronic Engineering, Shang Hai Institute of Technology, Shanghai 201418, China.
  • Xi-Ran Zhang
    School of Electrical and Electronic Engineering, Shang Hai Institute of Technology, Shanghai 201418, China.
  • Lin Zhao
    c Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education) , West China Second University Hospital Sichuan University , Chengdu , China.
  • Ji-Bing Huang
    School of Electrical and Electronic Engineering, Shang Hai Institute of Technology, Shanghai 201418, China.
  • Cheng Zhou
    Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.