A high-resolution trajectory data driven method for real-time evaluation of traffic safety.

Journal: Accident; analysis and prevention
PMID:

Abstract

Real-time safety evaluation is essential for developing proactive safety management strategy and improving the overall traffic safety. This paper proposes a method for real-time evaluation of road safety, in which traffic states and conflicts are combined to explore the internal relationship based on high-resolution trajectory data. In order to assess the real-time traffic safety at a lane level, the trajectory data of the HighD dataset from Germany are utilized to collect lane-based dataset. A surrogate safety measure, time-to-collision (TTC) index, is used for the conflict identification. A binary logistic regression model is employed to quantify the relationship between traffic states and conflicts. Moreover, machine learning methods, including support vector machine, decision tree, random forest, and gradient boosting decision tree, are applied for real-time evaluation. A total of 24 models are trained using the selected four classifier algorithms, and random forest achieves the best performance with 0.85 of the overall accuracy. The results show that the conflict risk can be well estimated by the proposed method. The findings of this study contribute to the high-precision evaluation of real-time traffic safety and the development of proactive safety management.

Authors

  • Yuping Hu
    Schlool of Jewelry and Art Design, Wuzhou University, Wuzhou 543002, China.
  • Ye Li
    Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China.
  • Helai Huang
    Urban Transport Research Center, School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan, 410075 PR China. Electronic address: huanghelai@csu.edu.cn.
  • Jaeyoung Lee
    School of Traffic & Transportation Engineering, Central South University, Changsha, Hunan, People's Republic of China. Electronic address: jaeyoung@knights.ucf.edu.
  • Chen Yuan
    Group for Suicide Studies, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
  • Guoqing Zou
    School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan, 410075, PR China.