DAFLNet: Dual Asymmetric Feature Learning Network for COVID-19 Disease Diagnosis in X-Rays.

Journal: Computational and mathematical methods in medicine
Published Date:

Abstract

COVID-19 has become the largest public health event worldwide since its outbreak, and early detection is a prerequisite for effective treatment. Chest X-ray images have become an important basis for screening and monitoring the disease, and deep learning has shown great potential for this task. Many studies have proposed deep learning methods for automated diagnosis of COVID-19. Although these methods have achieved excellent performance in terms of detection, most have been evaluated using limited datasets and typically use a single deep learning network to extract features. To this end, the dual asymmetric feature learning network (DAFLNet) is proposed, which is divided into two modules, DAFFM and WDFM. DAFFM mainly comprises the backbone networks EfficientNetV2 and DenseNet for feature fusion. WDFM is mainly for weighted decision-level fusion and features a new pretrained network selection algorithm (PNSA) for determination of the optimal weights. Experiments on a large dataset were conducted using two schemes, DAFLNet-1 and DAFLNet-2, and both schemes outperformed eight state-of-the-art classification techniques in terms of classification performance. DAFLNet-1 achieved an average accuracy of up to 98.56% for the triple classification of COVID-19, pneumonia, and healthy images.

Authors

  • Jingyao Liu
    School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, Jilin 130022, China.
  • Jiashi Zhao
    Changchun University of Science and Technology, School of Computer Science and Technology, WeiXing Road, Changchun 130022, China.
  • Liyuan Zhang
    School of Computer Science and Technology, Medical Imaging Engineering Laboratory, Changchun University of Science and Technology, No.7089, Weixing Road, Changchun, China.
  • Yu Miao
    Software College, Northeastern University, Shenyang, 110819, China.
  • Wei He
    Department of Orthopaedics Surgery, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
  • Weili Shi
    Changchun University of Science and Technology, School of Computer Science and Technology, WeiXing Road, Changchun 130022, China.
  • Yanfang Li
    Changchun University of Science and Technology, School of Computer Science and Technology, WeiXing Road, Changchun 130022, China.
  • Bai Ji
    The First Hospital of Jilin University, Changchun, Jilin, China.
  • Ke Zhang
    Center for Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310001, China.
  • Zhengang Jiang
    School of Computer Science and Technology, Medical Imaging Engineering Laboratory, Changchun University of Science and Technology, No.7089, Weixing Road, Changchun, China.