A multi-task two-path deep learning system for predicting the invasiveness of craniopharyngioma.
Journal:
Computer methods and programs in biomedicine
PMID:
35104686
Abstract
BACKGROUND AND OBJECTIVE: Craniopharyngioma is a kind of benign brain tumor in histography. However, it might be clinically aggressive and have severe manifestations, such as increased intracranial pressure, hypothalamic-pituitary dysfunction, and visual impairment. It is considered challenging for radiologists to predict the invasiveness of craniopharyngioma through MRI images. Therefore, developing a non-invasive method that can predict the invasiveness and boundary of CP as a reference before surgery is of clinical value for making more appropriate and individualized treatment decisions and reducing the occurrence of inappropriate surgical plan choices.